Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains
نویسندگان
چکیده
Platelets are essential for wound healing and inflammatory processes, but can also play a deleterious role by causing heart attack and stroke. Normal platelet activation is dependent on tetraspanins, a superfamily of glycoproteins that function as 'organisers' of cell membranes by recruiting other receptors and signalling proteins into tetraspanin-enriched microdomains. However, our understanding of how tetraspanin microdomains regulate platelets is hindered by the fact that only four of the 33 mammalian tetraspanins have been identified in platelets. This is because of a lack of antibodies to most tetraspanins and difficulties in measuring mRNA, due to low levels in this anucleate cell. To identify potentially platelet-expressed tetraspanins, mRNA was measured in their nucleated progenitor cell, the megakaryocyte, using serial analysis of gene expression and DNA microarrays. Amongst 19 tetraspanins identified in megakaryocytes, Tspan9, a previously uncharacterized tetraspanin, was relatively specific to these cells. Through generating the first Tspan9 antibodies, Tspan9 expression was found to be tightly regulated in platelets. The relative levels of CD9, CD151, Tspan9 and CD63 were 100, 14, 6 and 2 respectively. Since CD9 was expressed at 49000 cell surface copies per platelet, this suggested a copy number of 2800 Tspan9 molecules. Finally, Tspan9 was shown to be a component of tetraspanin microdomains that included the collagen receptor GPVI (glycoprotein VI) and integrin alpha6beta1, but not the von Willebrand receptor GPIbalpha or the integrins alphaIIbbeta3 or alpha2beta1. These findings suggest a role for Tspan9 in regulating platelet function in concert with other platelet tetraspanins and their associated proteins.
منابع مشابه
Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficien...
متن کاملTspan9 inhibits the proliferation, migration and invasion of human gastric cancer SGC7901 cells via the ERK1/2 pathway.
Tetraspanins are a heterogeneous group of 4-transmembrane proteins that recruit other cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs). TEMs of various types are involved in the regulation of cell growth, migration and invasion of several tumor cell types, both as suppressors or promotors. Tetraspanin 9 (Tspan9, NET-5, PP1057), a member of the transmem...
متن کاملTetraspanin microdomains: fine-tuning platelet function.
Platelets are crucial for preventing excessive blood loss at sites of injury by plugging holes in damaged blood vessels through thrombus formation. Platelet thrombi can, however, cause heart attack or stroke by blocking diseased vessels upon rupture of atherosclerotic plaques. Current anti-platelet therapy is not effective in all patients and carries a risk of bleeding. As such, a major goal in...
متن کاملTetraspanins in the humoral immune response.
The tetraspanins represent a large superfamily of four-transmembrane proteins that are expressed on all nucleated cells. Tetraspanins play a prominent role in the organization of the plasma membrane by co-ordinating the spatial localization of transmembrane proteins and signalling molecules into 'tetraspanin microdomains'. In immune cells, tetraspanins interact with key leucocyte receptors [inc...
متن کاملCholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites.
Tetraspanins constitute a family of widely expressed integral membrane proteins that associate extensively with one another and with other membrane proteins to form specific membrane microdomains distinct from conventional lipid rafts. So far, because of the lack of appropriate tools, the functionality of these microdomains has remained largely unknown. Here, using a new monoclonal antibody tha...
متن کامل